Multiple channels for horizontal, but only one for vertical corrugations? A new look at the stereo anisotropy.
نویسندگان
چکیده
Stereo vision displays a well-known anisotropy: disparity-defined slant is easier to detect for rotations about a horizontal axis than about a vertical axis, and low-frequency sinusoidal depth corrugations are easier to detect when the corrugations are horizontal than when they are vertical. Here, we determined disparity thresholds for vertically and horizontally oriented depth corrugations with both sinusoidal and square-wave profiles. We found that the orientation anisotropy for square waves is much weaker than for sine waves and is almost independent of frequency. This weaker anisotropy for square waves can be explained by considering the Fourier harmonics present in the stimulus. Using linear models imported from the luminance and texture perception domain, the disparity thresholds for square waves can be very well predicted from those for sine waves, for both horizontally and vertically oriented corrugations. For horizontally oriented corrugations, models based on the root mean square of the output of a single linear channel or the output of multiple linear channels worked equally well. This is consistent with previous evidence suggesting that stereo vision has multiple channels tuned to different spatial frequencies of horizontally oriented disparity modulations. However, for vertically oriented corrugations, only the root mean squared output of a single linear channel explained the data. We suggest that the stereo anisotropy may arise because the stereo system possesses multiple spatial frequency channels for detecting horizontally oriented modulations in horizontal disparity, but only one for vertically oriented modulations.
منابع مشابه
Testing the horizontal-vertical stereo anisotropy with the critical-band masking paradigm.
Stereo vision has a well-known anisotropy: At low frequencies, horizontally oriented sinusoidal depth corrugations are easier to detect than vertically oriented corrugations (both defined by horizontal disparities). Previously, Serrano-Pedraza and Read (2010) suggested that this stereo anisotropy may arise because the stereo system uses multiple spatial-frequency disparity channels for detectin...
متن کاملThe Stereoscopic Anisotropy Develops During Childhood
PURPOSE Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertica...
متن کاملSimilar Mechanisms Underlie the Detection of Horizontal and Vertical Disparity Corrugations
Our aim was to compare sensitivity for horizontal and vertical disparity corrugations and to resolve whether these stimuli are processed by similar or radically different underlying mechanisms. We measure global disparity sensitivity as a function of carrier spatial frequency for equi-detectable carriers and found a similar optimal carrier relationship for vertical and horizontal stimuli. Sensi...
متن کاملThresholds for sine-wave corrugations defined by binocular disparity in random dot stereograms: Factor analysis of individual differences reveals two stereoscopic mechanisms tuned for spatial frequency
Threshold functions for sinusoidal depth corrugations typically reach their minimum (highest sensitivity) at spatial frequencies of 0.2-0.4 cycles/degree (cpd), with lower thresholds for horizontal than vertical corrugations at low spatial frequencies. To elucidate spatial frequency and orientation tuning of stereoscopic mechanisms, we measured the disparity sensitivity functions, and used fact...
متن کاملNoise causes slant underestimation in stereo and motion
This paper discusses a problem, which is inherent in the estimation of 3D shape (surface normals) from multiple views. Noise in the image signal causes bias, which may result in substantial errors in the parameter estimation. The bias predicts the underestimation of slant found in psychophysical and computational experiments. Specifically, we analyze the estimation of 3D shape from motion and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2010